10,004 research outputs found

    Effects of depolarizing quantum channels on BB84 and SARG04 quantum cryptography protocols

    Full text link
    We report experimental studies on the effect of the depolarizing quantum channel on weak-pulse BB84 and SARG04 quantum cryptography. The experimental results show that, in real world conditions in which channel depolarization cannot be ignored, BB84 should perform better than SARG04.Comment: 4 pages, 4 figure

    Predominance of the Kitaev interaction in a three-dimensional honeycomb iridate: from ab-initio to spin model

    Full text link
    The recently discovered three-dimensional hyperhoneycomb iridate, β\beta-Li2_2IrO3_3, has raised hopes for the realization of dominant Kitaev interaction between spin-orbit entangled local moments due to its near-ideal lattice structure. If true, this material may lie close to the sought-after quantum spin liquid phase in three dimensions. Utilizing ab-initio electronic structure calculations, we first show that the spin-orbit entangled basis, jeffj_{\rm eff}=1/2, correctly captures the low energy electronic structure. The effective spin model derived in the strong coupling limit supplemented by the ab-initio results is shown to be dominated by the Kitaev interaction. We demonstrated that the possible range of parameters is consistent with a non-coplanar spiral magnetic order found in a recent experiment. All of these analyses suggest that β\beta-Li2_2IrO3_3 may be the closest among known materials to the Kitaev spin liquid regime.Comment: 9 pages, 6 figures, 2 table

    Object-oriented construction of a multigrid electronic-structure code with Fortran 90

    Get PDF
    We describe the object-oriented implementation of a higher-order finite-difference density-functional code in Fortran 90. Object-oriented models of grid and related objects are constructed and employed for the implementation of an efficient one-way multigrid method we have recently proposed for the density-functional electronic-structure calculations. Detailed analysis of performance and strategy of the one-way multigrid scheme will be presented.Comment: 24 pages, 6 figures, to appear in Comput. Phys. Com

    Experimental verification of the commutation relation for Pauli spin operators using single-photon quantum interference

    Full text link
    We report experimental verification of the commutation relation for Pauli spin operators using quantum interference of the single-photon polarization state. By superposing the quantum operations σzσx\sigma_z \sigma_x and σxσz\sigma_x \sigma_z on a single-photon polarization state, we have experimentally implemented the commutator, [σz,σx][\sigma_{z}, \sigma_{x}], and the anticommutator, {σz,σx}\{\sigma_{z}, \sigma_{x}\}, and have demonstrated the relative phase factor of π\pi between σzσx\sigma_z \sigma_x and σxσz\sigma_x \sigma_z operations. The experimental quantum operation corresponding to the commutator, [σz,σx]=kσy[\sigma_{z}, \sigma_{x}]=k\sigma_y, showed process fidelity of 0.94 compared to the ideal σy\sigma_y operation and k|k| is determined to be 2.12±0.182.12\pm0.18.Comment: 4pages, 3 figure
    corecore